[CalendarServer-changes] [15338] CalendarServer/trunk/contrib/performance

source_changes at macosforge.org source_changes at macosforge.org
Thu Nov 19 13:44:28 PST 2015


Revision: 15338
          http://trac.calendarserver.org//changeset/15338
Author:   cdaboo at apple.com
Date:     2015-11-19 13:44:28 -0800 (Thu, 19 Nov 2015)
Log Message:
-----------
LogNormal visualization and curve fitting.

Modified Paths:
--------------
    CalendarServer/trunk/contrib/performance/stats.py

Added Paths:
-----------
    CalendarServer/trunk/contrib/performance/stats_analysis.py

Modified: CalendarServer/trunk/contrib/performance/stats.py
===================================================================
--- CalendarServer/trunk/contrib/performance/stats.py	2015-11-19 20:00:29 UTC (rev 15337)
+++ CalendarServer/trunk/contrib/performance/stats.py	2015-11-19 21:44:28 UTC (rev 15338)
@@ -298,6 +298,8 @@
         else:
             raise ValueError("When using mode one of median or mean must be defined")
 
+        self._mode = mode
+        self._median = median
         self._mu = mu
         self._sigma = sigma
         self._scale = scale
@@ -470,28 +472,3 @@
                 return prop
 
         return None
-
-if __name__ == '__main__':
-
-    import matplotlib.pyplot as plt
-    from collections import defaultdict
-    mode_val = 6.0
-    median_val = 8.0
-    distribution = LogNormalDistribution(mode=mode_val, median=median_val, maximum=60)
-    result = defaultdict(int)
-    for i in range(1000000):
-        s = int(distribution.sample())
-        result[s] += 1
-
-    total = 0
-    for k, v in sorted(result.items(), key=lambda x: x[0]):
-        print("%d\t%.5f" % (k, float(v) / result[1]))
-        total += k * v
-
-    print("Average: %.2f" % (float(total) / sum(result.values()),))
-
-    x, y = zip(*sorted(result.items()))
-    plt.plot(x, y)
-    plt.xlabel("Samples")
-    plt.ylabel("LogNormal")
-    plt.show()

Added: CalendarServer/trunk/contrib/performance/stats_analysis.py
===================================================================
--- CalendarServer/trunk/contrib/performance/stats_analysis.py	                        (rev 0)
+++ CalendarServer/trunk/contrib/performance/stats_analysis.py	2015-11-19 21:44:28 UTC (rev 15338)
@@ -0,0 +1,229 @@
+##
+# Copyright (c) 2015 Apple Inc. All rights reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+##
+
+
+from collections import defaultdict, namedtuple
+from contrib.performance.stats import LogNormalDistribution
+from scipy.optimize import curve_fit
+import itertools
+import matplotlib.pyplot as plt
+import numpy as np
+import os
+
+
+class LogNormal(object):
+
+    Params = namedtuple("Params", ("mu", "sigma", "scale_x", "scale_y"))
+
+    @staticmethod
+    def fn(x, mu, sigma, scale_x, scale_y):
+        """
+        Calculate the LogNormal F(x) value for the given parameters.
+
+        @param x: x value to use
+        @type x: L{float}
+        @param mu: mean
+        @type mu: L{float}
+        @param sigma: standard deviation
+        @type sigma: L{float}
+        @param scale_x: X-scaling factor (to make mode == 1.0)
+        @type scale_x: L{float}
+        @param scale_y: Y-scaling factor for peak height
+        @type scale_y: L{float}
+        """
+        return scale_y * (
+            np.exp(-(np.log(x / scale_x) - mu) ** 2 / (2 * sigma ** 2)) /
+            (x / scale_x * sigma * np.sqrt(2 * np.pi))
+        )
+
+
+    @staticmethod
+    def estimate(x, y):
+        """
+        Given a set of x-y data that is likely a LogNormal distribution, try and estimate the mode
+        and median, and then derive mu, sigma, scale_x and scale_y values.
+
+        @param x: sequence of values
+        @type x: L{list} of L{float}
+        @param y: sequence of values
+        @type y: L{list} of L{float}
+        """
+        estimate_mode = 0.0
+        estimate_median = 0.0
+        max_y = 0.0
+        accumulated_y = 0.0
+        half_y = sum(y) / 2.0
+        for x_val, y_val in itertools.izip(x, y):
+            if y_val > max_y:
+                max_y = y_val
+                estimate_mode = x_val
+            accumulated_y += y_val
+            if half_y is not None and accumulated_y > half_y:
+                estimate_median = x_val
+                half_y = None
+
+        estimate_scale_x = estimate_mode - 0.5
+        estimate_mode = 1.0
+        estimate_median /= estimate_scale_x
+        estimate_mu = np.log(estimate_median)
+        estimate_sigma = np.sqrt(np.log(estimate_median) - np.log(estimate_mode))
+
+        peak_y = LogNormal.fn(estimate_scale_x, estimate_mu, estimate_sigma, estimate_scale_x, 1.0)
+        estimate_scale_y = max(y) / peak_y
+        return (
+            estimate_mode, estimate_median,
+            LogNormal.Params(estimate_mu, estimate_sigma, estimate_scale_x, estimate_scale_y),
+        )
+
+
+    @staticmethod
+    def plot(min_x, max_x, params, color):
+        """
+        Plot a LogNormal distribution over the specified x-axis range using the supplied
+        distribution parameters.
+
+        @param min_x: minimum x-axis value
+        @type min_x: L{float}
+        @param max_x: maximum x-asix value
+        @type max_x: L{float}
+        @param params: distribution parameters
+        @type params: L{LogNormal.Params}
+        @param color: color to use for line in plot
+        @type color: L{str}
+        """
+        xl = np.linspace(min_x, max_x, 10000)
+        yl = (
+            np.exp(-(np.log(xl / params.scale_x) - params.mu) ** 2 / (2 * params.sigma ** 2)) /
+            (xl / params.scale_x * params.sigma * np.sqrt(2 * np.pi))
+        )
+
+        plt.plot(xl, params.scale_y * yl, linewidth=2, color=color)
+
+
+    @staticmethod
+    def plotCSV(path, cutoff, bucket, color):
+        """
+        Plot data from a CSV file.
+
+        @param path: file to read from
+        @type path: L{str}
+        @param cutoff: maximum x-value to process
+        @type cutoff: L{float}
+        @param bucket: size of x-value buckets to use
+        @type bucket: L{int}
+        @param color: color to use for line in plot
+        @type color: L{str}
+        """
+        with open(os.path.expanduser(path)) as f:
+            data = f.read()
+        result = defaultdict(int)
+        for line in data.splitlines():
+            sp = line.split(",")
+            x_val = int(sp[0])
+            y_val = int(sp[1])
+            if x_val < cutoff:
+                result[(x_val / bucket) * bucket] += y_val
+
+        x, y = zip(*sorted(result.items()))
+        plt.plot(x, y)
+        return (x, y,)
+
+
+    @staticmethod
+    def distributionPlot(mode, median, maximum, color):
+        """
+        Plot data from a randomly generated LogNornal distribution.
+
+        @param mode: distribution mode
+        @type mode: L{float}
+        @param median: distribution median
+        @type median: L{float}
+        @param maximum: highest x-value to allow
+        @type maximum: L{float}
+        @param color: color to use for line in plot
+        @type color: L{str}
+        """
+        distribution = LogNormalDistribution(mode=mode, median=median, maximum=maximum)
+        result = defaultdict(int)
+        for _ignore in range(1000000):
+            s = int(distribution.sample()) + 0.5
+            result[s] += 1
+
+        x, y = zip(*sorted(result.items()))
+        plt.plot(x, y, color=color)
+
+        peak_y = LogNormal.fn(distribution._scale, distribution._mu, distribution._sigma, distribution._scale, 1.0)
+        scale_y = sum(sorted(y, reverse=True)[0:100]) / 100.0 / peak_y
+
+        return (x, y, LogNormal.Params(distribution._mu, distribution._sigma, distribution._scale, scale_y),)
+
+
+    @staticmethod
+    def fit(x, y):
+        """
+        Try and fit a LogNormal distribution to the supplied x-y data.
+
+        @param x: sequence of values
+        @type x: L{list} of L{float}
+        @param y: sequence of values
+        @type y: L{list} of L{float}
+        """
+        estimate_mode, estimate_median, estimate_params = LogNormal.estimate(x, y)
+
+        print("\n==== Estimates")
+        print("mode: {}".format(estimate_mode * estimate_params.scale_x))
+        print("median: {}".format(estimate_median * estimate_params.scale_x))
+        print("mu: {}".format(estimate_params.mu))
+        print("sigma: {}".format(estimate_params.sigma))
+        print("scale_x: {}".format(estimate_params.scale_x))
+        print("scale_y: {}".format(estimate_params.scale_y))
+
+        popt, _ignore_pcov = curve_fit(LogNormal.fn, x, y, (
+            estimate_params.mu, estimate_params.sigma, estimate_params.scale_x, estimate_params.scale_y,
+        ))
+
+        print("\n==== Fit results")
+        print("mode: {:.2f}".format(popt[2] * np.exp(popt[0] - popt[1] ** 2)))
+        print("median: {:.2f}".format(popt[2] * np.exp(popt[0])))
+        print("mu: {:.2f}".format(popt[0]))
+        print("sigma: {:.2f}".format(popt[1]))
+        print("scale_x: {:.2f}".format(popt[2]))
+        print("scale_y: {:.2f}".format(popt[3]))
+
+        return (
+            LogNormal.Params(*popt),
+            estimate_params,
+        )
+
+
+
+if __name__ == '__main__':
+
+    #x, y = LogNormal.plotCSV("~/data.txt", 10000, 10, color="b")
+    #estimate_mode, estimate_median, estimate_params = LogNormal.estimate(x, y)
+
+    mode_val = 450
+    median_val = 650
+    x, y, estimate_params = LogNormal.distributionPlot(mode_val, median_val, 10000, color="b")
+
+    LogNormal.plot(1, 10000, estimate_params, color="g")
+
+    popt, estimate = LogNormal.fit(x, y)
+    LogNormal.plot(1, 10000, popt, color="r")
+
+    plt.xlabel("Samples")
+    plt.ylabel("LogNormal")
+    plt.show()
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://lists.macosforge.org/pipermail/calendarserver-changes/attachments/20151119/e2ecb69c/attachment-0001.html>


More information about the calendarserver-changes mailing list